
Int. J. Solids Struclures Vol. 30, No. 10, pp. 1339-1354, 1993
Printed in Great Britain

0020--7683/93 $6.00+.00
© 1993 Pergamon Press Ltd

PARAMETRIC INSTABILITY OF STOCHASTIC
COLUMNS

S. ANANTHA RAMU and R. GANESAN
Department of Civil Engineering, Indian Institute of Science, Bangalore 560 012, India

(Received 10 March 1992; in revised/orm 22 October 1992)

Abstract-Columns which have stochastically distributed Young's modulus and mass density and
are subjected to deterministic periodic axial loadings are considered. The general case of a column
supported on a Winkler elastic foundation of random stiffness and also on discrete elastic supports
which are also random is considered. Material property fluctuations are modeled as independent
one-dimensional univariate homogeneous real random fields in space. In addition to autocorrelation
functions or their equivalent power spectral density functions, the input random fields are char
acterized by scale of fluctuations or variance functions for their second order properties. The
foundation stiffness coefficient and the stiffnesses of discrete elastic supports are treated to constitute
independent random variables. The system equations of boundary frequencies are obtained using
Bolotin's method for deterministic systems. Stochastic FEM is used to obtain the discrete system
with random as well as periodic coefficients. Statistical properties of boundary frequencies are
derived in terms of input parameter statistics. A complete covariance structure is obtained. The
equations developed are illustrated using a numerical example employing a practical correlation
structure.

I. INTRODUCTION

There have been a number of studies in the recent past, regarding differential equations
with periodic coefficients (Mclachlan, 1947; Yakubovich and Starzhinskii, 1975). A wide
variety of real life mechanical systems like rotor-bearing systems, structural systems sub
jected to vertical ground motion, aircraft structures in a turbulent flow, gun tubes during
multiple firing, rocket tanks subjected to longitudinal excitations generated from rocket
engines, spinning satellites, etc., are described through such differential equations with
periodic coefficients. The time periodic axial loads acting on these systems may induce
parametric vibration, a physical phenomenon characterized by unbounded growth of a
small perturbation. This parametric vibration causes considerable damage to the mechanical
components through critical states like combination resonance, etc., and hence assumes a
great research interest. The study of parametric instability of structural systems has, there
fore, attracted a considerable amount of research activity over the years. Apart from the
excellent monographs by Bolotin (1964) and Evan-Iwanowski (1976), works by Nayfeh
and Mook (1979), Dimentberg (1988), Herrmann (1967) and Ibrahim (1985) deserve
special mention. The powerful FEM has been used to obtain the boundary frequencies of
parametrically excited deterministic systems (Chen and Ku, 1990). However, effects of
distributed axial loadings and continuous as well as discrete elastic supports on the dynamic
stability characteristics of the systems have not been analysed using FEM. It is worth noting
that all these works assume a priori that the system properties are deterministic and if at
all, only the time varying axial load may be random tempting the usage of terms like
"Stochastic Stability". It is only natural to expect that while a perturbation in loads can
instigate instability of the system, uncertainties in the system parameters can also similarly
affect the system behavior.

It is well known that uncertainty clouds the description of loads, material properties,
geometry and boundary conditions in real life structural systems. This uncertainty stems
from many factors among which the dominant ones are: (I) Usage of modem construction
materials like RCC in civil engineering industry and fiber-reinforced composites in aerospace
industry, the material properties of which can be precisely described only in a probabilistic
sense; (2) In real mechanical equipment, many factors like non-uniform material density,
machining and manufacturing errors, variations in sizes of bolts, rivets, etc., lead to different
levels of uncertainty in respect of system parameters; (3) Loadings due to environmental
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effects are essentially random. As a result, the probabilistic description of strength
parameters, failure life, external loadings, etc., has gained much momentum (Shinozuka and
Lenoe, 1976; Vanmarcke, 1983; Bolotin, 1989). Of particular interest is the development of
theory of local averaging as a result of which newer measures of uncertainty like variance
functions, scale of fluctuations, etc., have been evolved (Vanmarcke, 1983). Analysis and
design procedures have undergone the necessary modifications, to suit the practice of
describing system parameters in a probabilistic sense (Bolotin, 1967; Soong and CozzarellL
1976; Schueller and Shinozuka, 1987; Zhu, 1988; Shinozuka, 1987; Augusti et al., 1981 ;
Boyce, 1968; Yom Scheidt and Purkert, 1983; Ibrahim, 1987; Anantha Ramu et al., 1992;
Anantha Ramu and Ganesan, 1992b). In this context, the integration of the powerful FEM
of structural analysis with the probabilistic mechanics has received a significant amount
of impetus recently (Contreras, 1980; Liu et al., 1986; Shinozuka and Deodatis, 1988;
Vanmarcke and Grigoriu, 1983; Spanos and Ghanem, 1989; Benaroya and Rehak, 1988;
Liaw and Yang, 1991). An efficient version of stochastic FEM wherein the concept of local
averaging was coupled with multivariate statistical analysis to yield a powerful com
putational finite element scheme, has been developed by the present authors (Anantha
Ramu and Ganesan, 1991a). This was adopted by the authors (Anantha Ramu and Ganesan,
1991b, 1992a; Anantha Ramu et al., 1991; Sankar et al., 1992) to analyse a variety of
stochastically parametered structural systems which are characterized by self-adjoint and
nonself-adjoint random eigenvalue problems as well as problems with singularities.

In the present effort, the stochastic FEM is formulated to study the dynamic instability
phenomena of parametrically excited stochastic systems. To this end, a column with discrete
as well as a continuous Winkler elastic support subjected to deterministic, periodic end
thrust and which has stochastically distributed system parameters is considered.

2. SYSTEM DESCRIPTION

A column of span L and second moment of area of cross-section 1 is considered as
shown in Fig. 1. The Young's modulus of elasticity and mass per unit length vary stoch
astically along its undeformed axis. These variations are identified to be independent one
dimensional univariate homogeneous real stochastic fields in space and are given by

E(x) = £[1 +a(x»),

m(x) = m[l +b(x)),

(1)

(2)

tnd thrust Plt)

Winklpr foundation of Stiffness
kt/unit length

Discrete plastic supports

Uniformly distributed load
P/unit Ipngth

ox=

~
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.~ L
r: ~ 1

~
"""- Ii'.\
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~

~

t_End thrustlPlt).Q)

Fig. I. A column with discrete elastic supports and Winkler foundation subjected to compressive
loads.



Parametric instability of stochastic columns 1341

where x is taken along the undeformed axis of the column, Eand mare the respective mean
values of Young's modulus and mass density and a(x) and b(x) are two independent zero
mean one-dimensional univariate homogeneous real random fields in space. The random
fields are characterized by their respective variances u; and u;, autocorrelation functions
Raa(T) and Rbb(T) [or their equivalent power spectral density functions Saa(f) and Sbb(f)]
and scale of fluctuations (Ja and (Jb. In the above, T is the lag vector and f is the wave
freq uency of the spectrum of the random fields.

The column subjected to an axial periodic loading given by

P(t) = Po+P, cos rtt, (3)

where rt is the axial disturbance frequency, Po is the static component and P, is the time
dependent component. Po, P, and rr are deterministic quantities. Together with this, the
column is subjected to an axially distributed deterministic compressive loading of intensity
p/unit length.

The support stiffness coefficient of the Winkler foundation, on which the column is
resting, is a random variable given by

(4)

where kr is the mean value and P is a zero mean random variable characterized by its
variance uJ.

In addition to the Winkler foundation, the column is supported on discrete elastic
supports of stiffness k s at r locations and ks is a random variable given by

k s = ((1 +s), (5)

where f, is the mean value and s is a zero mean random variable characterized by its
variance u;.

3. CONSISTENT FINITE ELEMENT FORMULATION

The governing equations for the stochastic finite element formulation of the problem
are now derived directly using the variational principles and Bolotin's method (Bolotin,
1964) for the deterministic case.

The column is divided into NF finite elements with appropriate lengths. The discretiza
tion is independent of the stochastic nature of material properties and loadings. The length
of a typical element is I, with end nodes I and 2. At each node, translational and rotational
d.o.f. are considered and cubic hermitian polynomials are used. Therefore, the transverse
displacement at any point is given by

Nt = [N, N z N J N 4J'

W(x, t) = N'if where (6)

(7)

(8)

i.e. N' is the row vector of shape functions and the components of if are functions of t,
time. Shape functions are in terms of natural coordinates L I and L z•

The total energy stored in the element is given by
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Me = Me +Me(Q)

(I,. f"
= Jo m' Ne

r
. N e dx+m Jo b(x)' W'Ne dx,

Ke = Re + Ke(Q)

= f EI' N~:N~x dx+f Ela(x)' N~> N'~x dx.

(9)

(10)

( II )

(12)

Subscripts t and x denote partial differentiations with respect to time and space and Q

indicates the stochastic nature.
Because of the presence of the distributed axial compressive load the element e is

subjected to a uniformly varying axial compression increasing from F\ to r; as shown
in Fig. 2. The axial compression at any arbitrary section of the element is given by
(F, +px) = (F, + (Q/L)x), where x is measured positive in the increasing direction of the
axial compression and Q is the total uniformly distributed load. Therefore. the work done
by the axial compression in the element, W~ is given by

1 j/,
W~ = 2 Jo (F~ +Qx/L)w~ dx

element l?

where

_ ~ Fe elKe e+ I Q eT Ke e- 2 I q Gcq 2 q Goq,

wt
+-

I
I
I
I
I
I
I
I
I

-t- --;;r -----t>-..='--..........F-r-'t-)--'
I el?
I 2

Fi(I)

Fig. 2. Distribution of axial compression on the element - e.

( 13)



F'I is written in the form
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F'I = P+r:xeQ,
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(14)

(15)

(16)

where rx: is a factor less than 1.0 corresponding to the fraction of the total distributed load
acting at the trailing node of the element e.

The work done by the reactive force of the foundation, W; is given by

(17)

where

(18)

If the discretization is so made as to have a node at the location of the discrete elastic
supports, the work done by such support reactions may be added after all the work
quantities due to the distributed forces on each element have been summed up, at the global
level, to get the total work done. The work done by the discrete elastic support reaction at
a node j, Wsj is given by

(19)

where wj is the transverse displacement at the jth support. Denoting the total kinetic and
elastic strain energies by T and U respectively and further denoting the total work done
by WT , the application of the classical Hamilton's principle to the entire structure yields:

(20)

i.e.

112 [NF I J 112
[NF Jo L _q~T. Meq~ dt- 0 L qeTKeqe dt

I, e= I 2 I, e= I

NF 1 T rIo oJ- L: -if K;if- L -wJkswJ dt = O.
e= 1 2 j= I 2

The summations are made in the sense of finite element assemblage, taking the global

SAS 3O·10-E
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displacement vector to be q. Now, if contemporaneous variations of q are taken while
integrating the first term by parts, eqn (20) reduces to,

i/2 [_bqT. Mql/ _bqTKq+bqT PKGcq+bqTQK*Gcq
/,

It may be noted here that since F, is given by eqn (16), an element modified geometric
stiffness matrix is formed as

K~c = rJ."Kac · (22)

As a result, a global modified geometric stiffness matrix denoted by K~c is formed by
assembling the element matrices K~c.

Equation (21) will yield a system of second order differential equations with periodic
coefficients of the Mathieu-Hill type. The theory of linear differential equations with
periodic coefficients (Bolotin, 1964) suggests that the boundaries between stable and
unstable regions can be constructed by periodic solutions of period 2n/rJ and 4n/rJ. It has
also been suggested that the periodic solutions with period 4n/rJ are of the greatest practical
importance. So, we shall seek the periodic solutions with period 41t/rJ in the following form :

_ . rJl - rJl
q = a sm 2 +b cos 2 .

Considering the arbitrariness of the variation of q we get,

(23)

[

- K - Kf - K, + (Po - P,/2)KGC
+QKGD+QK~c

o

where J1 = rJ2/4.
This is the equation of boundary frequencies which defines the boundaries between

stable and unstable regions. This can also be viewed as a set oflinear homogeneous algebraic
equations in terms of q which can be obtained first by substituting eqn (23) in eqn (21),
then considering the arbitrariness of the variation of q and finally equating the coefficients
of sin (rJl/2) and cos (rJl/2).

Any total stiffness coefficient is given by

k:/' = -(kij+kij(Q)+k£+k£(Q)+kij+kliQ»

= -(k;tt+k;tt(Q»

where ki~OI is the deterministic component, given by

and the stochastically fluctuating component ki~ot(Q) is given by

(25)

(26)
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In the above and in the sequel primes denote total differentiation in space.
The mean and variance of kit are derived as follows:

Mean value

as (a(x» = (p) = (s) = O.
Variance of kIt is derived as,

1345

(27)

oN;'(rz)Nj'(rz) dr, drz+ (f KtN;(X)NjdXY a}+(K1j)2o-;

= £z12ff Raa(-r:, -rz)N;'(r,) ° Nj'(r,)N;'(rz)

° Nj'(rz) dr, drz + (f KrN;(x)Nj(x) dxya} + (Klj)Za;. (28)

Similarly the mass coefficient statistics can be shown to be,

(29)

and

(30)

The covariance between any two stiffness coefficients identified as k;lol and k::l where
these are global stiffness coefficients, is derived as follows:

= \ £1f a(x)N;'(x)Nj'(x) dx ° £1r' a(x)N;(x)N;(x) )

+ (Kf)Za} (f N;(x)~(x) dxr' N,(x)N,(x) dX) +a: ° (Klj ° K:.), (31)

where /1 and /z are the lengths of elements corresponding to the stiffness coefficients. This
simplifies to the expression
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{E 2I 2frN';(Tj)N7(T\)N;'(T2)N;:Cr2) dT, dT2} <E1(ij)E2(rs)

+ (kj }2afi (L' N,(x)NJx) dx'rN,(x)N,(x) dX) +a;(k;j·f;,.). (32)

Over each element local averages are formed as follows:

If'"E,. = I a(x) dx,
e 0

1 f'"nle = I hex) dx.
e ()

These local averages have zero means and their variances are given by:

Var (Ee ) = a,~1,,(le),

Var (me) = a;1h(le),

(33)

(34)

(35)

(36)

(37)

where 1,,(le) and 1h(le) are variance functions which are functions of scales of fluctuations
ell and eh • A detailed theory about the scales of fluctuations can be seen in Vanmarcke
(1983). As a result, eqn (32) reduces to, after using the variance functions (Anantha Ramu
and Ganesan, 1991b) :

Cov (k,lt',k,l~l) = {E 2I 2L' N;'(x)N7(x) dx

xrN;~(x)N~(x) dX}' a; [L51a(Lo)-Lf1,,(L\)

+ L~1,,(L2) - L~r,,(L})] + (kr)
2

• afi . (L' N,(x)Nj(x) dx

.rNr(x)N,(x) dX) +a; (k;j . k;,.),

where La, L h L 2 and L} are shown in Fig. 3.

~3
~~

, ..
~

E~

19

Fig. 3. Correlation parameters corresponding to two arbitrarily located finite elements.



Parametric instability of stochastic columns 1347

It may be noted that in terms of the correlation functions rae . , .) and rb(', '), the
above equation can be rewritten as :

r/2

.Jo N~(x)N;(x) dx

Similar expressions can be written for mass coefficients.

4. STATISTICS OF BOUNDARY FREQUENCIES

The equation of boundary frequencies is given by

[Knet]{x} = jl[M]{x} ,

where

(39)

[

- K - Kf - Ks+ PoKGC - Pt/2KGC

[Knet] = +Q(KGD +KtJd
o

-K-Kf-Ks+~OKGC+Pt/2Kac ],

+Q(KGD +KtJd

[M] = [~ ~J and {x} = {~}.

The averaged problem corresponding to eqn (39) is,

(40)

Since the net stiffness matrix and mass matrix are derived using the stochastic finite
element method, consisting of a deterministic component and zero mean fluctuating com
ponent, the mean values form the averaged problem.

Using the expressions for covariances between stiffness, mass and geometric stiffness
elements, the covariances between the elements of Knet are given by their superpositions
and it can be noted that the fields a(x) and hex) are independent.

The covariance matrix can now be constructed as follows:
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Var (k~el)

Cov (k~el,k~Cl)
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Cov (k~el, k~et) . . . Cov (m I, k~ct) ...

Var(md .. ·

COy (m." k';")1
Cov(mn2 ,ml)

J

= [~:~: ~~:l (41)

where n2 = 4n 2
; n = global d.o.f. of the structure.

In the above covariance matrix, the submatrices C 12, C21 become null matrices as the
two material property variations are independent, stochastic fields.

As a result, the mean values of boundary frequencies become the boundary frequencies
found by solving the unperturbed problem given by eqn (40).

The statistics of boundary frequencies are derived as follows. The perturbations of
boundary frequencies can be shown to be

2n 2n OJ1. 2n 2n OJ1.
dJ1.; = L L okn~t dk~:t + L L~ dmrs

r= J s= I rs r= I s= t mrs

2n 2n (OJ1. OJ1. OJ1.) 2n 2n OJ1.
L L ok' dk;;+ ok! dk£ + 0'''' dlC;j + L L o~ dm"" (42)

r= I s= I lJ IJ Kil r= 105= I mrs

where

(43)

(44)

The perturbations of eigenvectors can also be written in a similar manner.
The mean value of any boundary frequency J1.m is derived as follows:

(45)

_ _ 2n 2n {oJ1.m ~J1.m f 0J1.m. } 2n 2n 0J1.m
J1.m - J1.m +L.L ok (k;;(Q» + ok! (k;j(Q» + old (k1;(Q» + .LL a~.. (mij(Q»,

,= IJ= 1 'J 'J '] ,= 1/= 1 mil

The covariance between any two boundary frequencies is derived as follows:

(46)

(47)
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as COy (k:t(!l), m,,(!l» = O.
Therefore,
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(48)

2n 2n 2n 2n OIJ. OIJ.
Var(Jiq) = u;, = L L L L ak';t akn~t Cov(Jc:t(!l),k~I(!l»

i=-lj=l,.ls-1 ij rs

2n 2n 2n 2n O/lq O/lq
+ L L L L -a- -a- Coy (m;j(!l), m,,(!l», (49)

;= Ij- 1 r_ I ._ 1 mij mrs

2n 2n 2n 2n OIJ. OIJ.
COY (}lp, }lq) = L L L L ok.:.et ok';t COY (kijet(!l),Ic,';t(!l»

i-lj=I,-ls-l/j rs

2n 2n 2n 2n O}lp OIJ.q
+ L L L L a -8- Coy (mij(!l), m,,(!l». (50)

;= 1j_ I r_ I ._ 1 mij mrs

Since

(51)

where the function A( " . ) is defined as

A(P"k~c) = - ~' k~, i, j ~ n

The covariance between k:t(!l) and k~t(!l) is given by,

Cij~.~ = <k:t(!l), k~t(!l» = <{kij(!l) +kl(!l) +k:j(!l)} • {k,,(!l) +k[.(n) +k:.(!l)}>
= <k;;(!l), !,,,(!l)~ + <kij(!l) •k{.(!l)>+ <kij(!l), k:.(!l)>+ <kl(!l), k,,(!l)>+ <k{;(!l) , k{.(!l)>

+ <k!;(!l) , k:.(!l)>+ <k:j(!l) , k,.(!l)>+<k:j(!l) , k{.(!l)>+ <k:j(!l) , k:.(!l)> (53)

the underlined terms are nonzero and so,

where rr;" is the correlation coefficient between kt; and k[. and rJj" is the correlation coefficient
between k:j and k:•. Further
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- 1 ~ r/vn r~jr, ~ + 1.

As a result, using eqn (38), Cj~; is given by

(55)

The expressions used to evaluate the covariance ofeigenvector elements are very similar
to those above since each eigenvector element is also perturbed about its averaged value as
eigenvalues are perturbed. The covariance matrix of eigensolution can thus be constructed
using the above formulae.

5. SOLUTION OF THE DETERMINISTIC CASE

The expressions developed in the foregoing constitute the solution of the general case
of a stochastic column resting on continuous and discrete elastic supports. The deterministic
axial loading is pulsating at the end and is uniformly distributed along the length of the
column. Such a general treatment becomes possible because the finite element method is
employed. Any comparison with the results of standard analytical procedures, however,
would be possible only for a simplified deterministic case.

It is easy to verify that in the absence of all random quantities, all discrete and
continuous elastic supports and the distributed axial load equations (39) reduce to the
simplified case of the finite element analysis of a deterministic column under pulsating loads
examined by Chen and Ku (1990). The last cited work has demonstrated the accuracy of
the finite element method of analysis of the deterministic case by comparing the results with
those of standard analytical procedures. This exercise is therefore not repeated in this paper
and in the following numerical study only the stochastic case will be examined.

6. NUMERICAL EXAMPLE

A column with simply-supported end conditions is considered as shown in Fig. 4. The
Young's modulus as well as the stiffness of the Winkler foundation are treated as random.
The mean value of E is given by

CD

t
L/3

t
LI3 Win kll'r Fa undotion

t
LI3

~ t
o Ell'ml'nt Nos.
a Nodl' Nos.

Fig. 4. Example problem.
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Table 1. Variances of boundary frequencies when E is random

1351

Input
variance Var (/1,) Var (/13) Var (/1s) Var (/16) Var (/17)

(J2 x 10+ 2 X 10+ 4 Var (/12) x 10+ 2 Var (/1.) x 10+ 3 X 10-' X 10+ 2
£,

1.0 3.7708 0.4628 1.5588 1392.2894 3.1580 8.9718 2.2488
2.0 7.5417 0.9257 3.1177 2784.5789 6.3161 17.9436 4.4976
3.0 11.3125 1.3885 4.6765 4176.8683 9.4741 26.9153 6.7464
4.0 15.5083 1.8513 6.2354 5569.1577 12.6321 35.8871 8.9952
5.0 18.8542 2.3141 7.7942 6961.4472 15.7901 44.8589 11.2440
6.0 22.6250 2.7770 9.3531 8353.7366 18.9482 53.8307 13.4927
7.0 26.3958 3.2398 10.9120 9746.0261 22.1062 62.8025 15.7415
8.0 30.1667 3.7026 12.4708 11138.3155 25.2642 71.7742 17.9903
9.0 33.9376 4.1655 14.0296 12530.6049 28.4222 80.7460 20.2391

10.0 37.7084 4.6283 15.5885 13922.8944 31.5803 89.7178 22.4879

E= 2.1 X 10 5 Nmm- 2
•

The mass density is

7.83x 1O- 9 Nsecmm- 4
,

and the length of the column is 7.35 m. Further, P = I N.
The stochastic process a(x) representing the fluctuating components of modulus of

elasticity can have any correlation structure but for illustrative purposes is represented by
the exponential type correlation function.

The correlation function is given by

r(r) = e-1rl/b ; b = constant.

The corresponding variance function is given by (Vanmarcke, 1983):

First, kf is set equal to zero and uncorrelated E values are considered.
The variances ofboundary frequencies which characterize the stochasticity ofboundary

frequencies are obtained for different input variances and are given in Table I. Covariances
between boundary frequencies which describe their inter-statistical-dependence are given
in Tables 2 and 3. Now, kf is considered to be 17900 N m. Again, variances of boundary
frequencies for different input variances of both the Young's modulus and Winkler elastic
support are plotted in Fig. 5 and covariances between boundary frequencies are plotted in
Fig. 6. In all these numerical results, input variance a;;, which is a function of scale of

Table 2. Covariances between boundary frequencies when E is random

Input
variance

(J2 x lO+2
£,

1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0

9.7272
19.4543
29.1814
38.9086
48.6358
58.3629
68.0901
77.8172
87.5444
97.2715

9.9823
19.9646
29.9488
39.9291
49.9113
59.8936
69.8759
79.8582
89.8404
99.8227

1.5989
3.1978
4.6341
6.3957
7.7236
9.2683

11.6504
12.7914
13.9024
15.4471
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Table 3. Covariances between boundary frequencies when E is random

Input
variance COy (f'I, 117) COy (1'2' I' ,,) COy (1'1' IL,)
aLx 10+] xIO '17 x 10+ 14 X 10+ 7

1.0 2.2148 0.9848 -3.1357
2.0 4.4296 1.9096 -6.2714
3.0 6.6495 2.9545 --9.4071
4.0 8.8593 3.9393 -12.5428
5.0 11.0795 4.9241 - 15.6785
6.0 13.2991 5.9089 -18.8142
7.0 15.5244 6.8938 -21.9499
8.0 17.7186 7.8786 -25.0856
9.0 19.9364 8.8634 -28.2213

10.0 221591 9.8482 - 31.3570

fluctuation 8" is varied to result in a parametric study with reference to the scale of
fluctuation.

It may be noted that the correlation model employed in this example can be interpreted
as exactly representing the "First-order autoregressive models" and the "Markov chain
models". These two models are identified in the published literature as the practical
engineering stochastic models giving excellent performance in modeling the field data.
Further it is the constant b that determines the memory length and so the parametric study
that follows presents the effect of its variation through (J Ei on the system response moments.
Further, this model contains one memory in excess of ideal white noise models of infinite
power. One solution bound is always given by white noise field only. But, the total power
is infinite in the case of a white noise field, which is impractical. However, the practical
finite power stochastic fields can always be derived from ideal white noise fields with the
least effort by allowing only one memory, which is done here. Thus, a practical field model
is considered.

The influence of different types of input correlation models on the variability of
eigenvalues of a nonself-adjoint stochastic system is examined by the authors in an earlier
work (1992).
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Fig. 5. Variances of boundary frequencies.
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Fig. 6. Variances between boundary frequencies.
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7. CONCLUSIONS

The stochastic finite element method is formulated to solve the random system of
boundary frequencies of an elastically supported stochastic column subjected to deter
ministic periodic axial loadings. The formulation makes the finite element discretization
independent of the stochastic nature of the material property fluctuations and stiffnesses of
elastic supports. The stochastic fields are defined in terms of means, variances and scale of
fluctuations. The stochastic finite element method so developed enables the derivation of
complete statistics of boundary frequencies and corresponding modes directly in terms of
input parameter statistics. The computational efficiency of the method is demonstrated
through a numerical example. Extension of the foregoing procedure to problems in two
and three dimensions appears to be straightforward.
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